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Introduction

' The human thoracic skeleton is a complex structural system composed
of a variety of interconnected force transmitting members. Each one is
unique in its geometry, articulation with its neighboring member and
intrinsic material properties. Collectively, they form a structural
framework which plays a key role in protecting the thoracic viscera
(heart, lungs, liver, spleen and great vessels) from injury as a conse-
quence of externélly applied forces. This framework consists of primary
and secondary structural elements; namely, those which form the first linme
of resistance to deformation (ribs, sternum, vertebral column) and others
(certain muscles, tendons, ligaments) which participate involuntarily
only after finite distortion of the main framework has occurred.

Voluntary effects such as'the closure of the glottis and tension-
ing of the abdominal wall can play a significant role in increasing the
resistance of the chest wall to deformation. Under these conditions air
cannot readily escape and the volume of the abdomen cannot increase,

thereby increasing the apparent chest stiffness dramatically. On the
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other hand, if the glottis is opened and the stomach muscles are relaxed,
gome air can escape and the abdominal wall can distend, leaving the
gskeletal framework to provide the required resistance to deformation.

Forces acting on the anterior chest wall are transmitted through
the superficial tissue to the underlying bony skeleton. Internal stresses
and strains are developed within the individual skeletal elements (e.g.
ribs, sternum), which if sufficiently intense can cause fracture, joint
dislocations, as well as pneumo-and/or hemothorax.

Chest injury tolerance and biomechanical behavior play an important
role in the crashworthiness design of all transportation systems. This is
particularly true for automobiles, since nonpenetrating injuries are the
second leading cause of automobile crash fatalities, Kihlberg (1965). The
concept of vehicle crashworthiness itself has as its objective occupant
protection from injury. This end objective can only be sensibly achieved
in concert with a thorough scientific understanding of the injury produc-
ing processes.

Scientisté concerned with impact tolerance and biomechanical behavior
of the human thorax have approached these problems from two directions;
experimentally and analytically. Laboratory efforts typically focus upon
experiments conducted upon human volunteers; Lobdell (1973), Patrick (1966),
cadavers; Nahum (1975), Patrick (1975), Schmidt (1975), Kroell (1974, 1971),
Lobdell (1973), Stalmaker (1973), and most recently Robbins (1976) and
Eppinger (1978), animals; Schreck (1973), Shatsky (1974), or anthropometric
durmies, Schmidt (1975). Analysts, on the other hand, have sought to
create either lumped parameter models, which are in fact mathematical

representations of laboratory data, Lobdell (1973), or basic structural
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dynamic representations of the actual thorax, Chen (1978, 1974), Roberts
(1975, 1974, 1971), Reddi (1977), Andriacchi (1974)*. This second analy-
tical approach offers the only possibility for ever gaining a fundamental
conceptual understanding of injury processes and thereby a predictive
capability applicable to a wide variety of circumstances. It goes with-
out saying that this objective can only be achieved by the sincere efforts
of the experimentalist and analyst working cooperatively toward the same

goal.

The THORAX V Model

The THORAX V model is a finite element representation of an average
sized seated male (Fig. la, 1b). The major structural and mass components
of the thoracic skeleton are represented as:

Head - Lumped mass

Ribs - Curved-twisted beam elements

Vertebral Column - Straight beam elements

Costal Cartilage - Straight beam elements

The overall dimensions are approximately those of a 50th percen-

tile male, bearing in mind that the THORAX V dimensions are skeletal.

THORAX V 50th percentile male
Height - 68 in.
Seated Height 31.5 1in. 35.7 in.
Chest depth 7.9 4in. 9.0 in.
Chest circumference 34.6 1in. 37.7 in.
Chest breadth 11.0 in. -
Total weight 152.5 1bs. 164 1bs.

(estimated)

* For additional references in all categories see McElhaney (1976),
King (1975)
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The model is geometrically midsagittally symmetric and fully three-
dimensional (1074 D.0.F.) capable of accepting arbitrary spatially and
temporally varying forcing functions. All matérial propertiés are linear
elastic and small deformation theory is invoked. The total mass is dis-
tributed to the nmodal points using data from Liu (1975).

The analysis is conducted on SAP&, using modal decomposition and
superposition. The first fifty modes and frequencies are generated and
then used in the SAP RESTART mode to analyse forced responses. A separate
program has been written to calculate modal point accelerations and plot

the results.

Comparison of THORAX V Predictions with Experiments

AThe experimental data used for this study is contained in Robbins
(1976, 1978), Eppinger (1978). These consist of filtered (100 Hz) record-
ings from accelerometers mounted at 8 locations on the skeleton of each
of the tested cadavers. These locations and the corresponding THORAX V

nodal points are given in the table below and in Fig. 2a, 2b.

D.O.F.

Accelerometer Location D.0.F. No.: THORAX V N.P.
Upper Sternum P-A - 1 17
Lower sternum P-A 1 120,121
Left Upper Ribs, at midaxillary line R-L 2 45,46
Left Lower Ribs, at midaxillary line P-A 1 134,135
Right Upper Ribs, at midaxillary line R-L 2 52,53
Right Lower Ribs, at midaxillary line P-A 1 140,141
T-1 I-S 3 9
T-1 P-A 1 9
T-1 R-L 2 9
T-12 I-S 3 174
T-12 P-A 1 174
T-12 R-L 2 174
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Of interest in this study, is the data corresponding to

Frontal Impacts: 14 fps and 20 fps

Side Impacts: 14 fps and 20 fps

The acceleration time histories of the impacting piston are not contained
in these references but were obtained from NHTSA.

Since the impactor is '"rigid", 1its force-time history while in
contact with the chest, is obtained by.multiplying its acceleration
profile by its mass (weight of impactor, 51.5 1lbs). What is not known,
is the exact location of the impactor and how this forcing function dis-
tributes itself over the 6 in. diameter impact area. This will be influ-
enced by the intrinsic geometry of the cadaver chest, its posture relative
to the impactor and the inherent "stiffness distribution" of the chest
wall. Since none of this information is available for each cadaver, we
used our best judgement to assign the spatial load distribution for each
test studied.

The phasing of the forcing function over the contact area is also
important. Since the chest wall geometry does not initially conform to the
flat impactor face, some points on the impacting surface are in contact
while others are not in contact. Since:this was not measured, we modi-
fied some forcing function amplitudes slightly .

Based upon the avallable data, the following test cases were

selected for comparison with THORAX V predictioms.

Case Impact Sex Ht.(em) Wt.(kg) AIS
761053 Frontal, 14 fps M 176.8 83.7 O
771083 Frontal, 20 fps -* - - -
76T062 Side,14 fps - - - -
77T077 Side, 20 fps M 175.5 73.7 3

*Information not available
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Each of these cases is discussed below in detail. Since no phasing
information is available, the THORAX acceleration peaks were_aligned with
those of the experiments. Frontal impact cases were mﬁdeled.as midsag-
ittally symmetric.

Evaluation of the THORAX V results for each of the 4 cases pre-
gsented below should be made with the uﬁdetstanding that information on
each of the following effects was not available and consequently could not
be incorporated in the THORAX V model.

a) The detailed anatomy of each cadaver tested

b) The spatial and temporal (especially phasing) impact load

distribution to the skeletal structure

c¢) The causes for some of the wide scatter in the data

d) The pre-impact posture of the test specimen

Significant structural differences exist between the side and
frontal impact configurations. The sternum, a rather rigid flat plate,
gerves to distribute frontal loads to the individual ribs in proportion
to the apparent stiffnesses they present to the sternum. As a consequence,
the frontal impact case is less sensitive to spatial load distribution.
During side loading, the impactor is in contact with individual ribs
and only the musculature and superficial tissues are present to '"spread”
the load. The natural curvature of the midaxillary region further enhances
the possibility of intense local rib contact. Therefore, at this stage
of development, one should not expect THORAX V predictions for side impact

to correspond with the data as well as the frontal impact cases.
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For both frontal and side loading, a number of spatial load dis-
tributions were investigated. As expected, we found that some nodal
point accelerations were more sensitive than others and that the sensiti-

vity decreased for points well removed from the area of load.application.

76T053, FRONTAL IMPACT, 14 fps

The impactor acceleration pulse is shown in Fig. 3 with the THORAX V
forcing function for this case, superimposed. The calculated acceleration
time histories are shown in Figs. 4 thru 13. All peak values compare
quite well except for the left and right lower ribs, where the predictions
are significantly above the experimental data. This is probably attri-
butable to the choice of the spatial load distribution which may be over-
loading the lower ribs somewhat. This could be investigated by a more
elaborate parametric study than we have had the opportunity to run.

Further insight can be gained by comparing the peak values given
in Table 1. The R-L readings are omitted since THORAX V assumes the frontal
impact to be midsagittally symmetric whereas the data shows some lack of
symmetry which is to be expected. All the signs do correspond, suggesting
that all the nodal points are predicted to be moving in the correct direc-

tions.

777083, FRONTAL IMPACT, 20 fps

The forcing function used for this case is shown in Fig. 14. Since
only four filtered accelerometer recordings were available, only four
superimposed graphs are presented in Figs. 14 to 17. The peak values for

the remaining data points were taken from the unfiltered curves and tabu-

lated in Table 1,
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The predicted initial pulse shapes and upper sternum amplitude
correspond fairly well with the experiments. At most other points
THORAX V tends to overestimate the peak accelerations except at T-1 and

T-12 where again the correspondence is quite good.

76T062, SIDE IMPACT, 14 fps

The forcing function shown in Fig. 18 is delivered to the left side
in the lateral-medial direction. As previously mentioned, the response
of the upper and lower left side accelerometers will be strongly dependent
upon the exact contact condition. This is demonstrated by the poor cor-
relation obtained for these points (Figs. 21, 22). However, at points
distant from the contact area, the response tends to be more dependent
upon the total load time history, than the spatial distribution. We
observe better correlation at the sternum, right side ribs and some of the
vertebral column degrees of freedom, (Figs. 19, 20, 23 to 28). Again

the peak values are compared in Table 1.

77T077 SIDE IMPACT, 20 fps

The forcing function and results fgr this case are presented in
Figs. 31 to 41. Many of the predicted peak amplitudes compare reasonably
well with the data as can be seen from Table 1. In this case, as well as
for 76TO62 we observe that THORAX V tends to predict lower frequency res-
ponse characteristics than is present in the data. This suggests that in
side impact, the superficial tissue and musculature may play a more signi-
ficant role in stiffening the chest wall and distributing the load than

in frontal loading where the sternum serves this role.
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Summary, Conclusions and Suggestions for Future Work

The THORAX V structural dynamic model of a 50th percentile male
skeleton was exercised using loading functions from two froﬁtal and two
side impact experiments. A comparison of the predicted acceleration
profiles to their corresponding experimental results can be made from the
accompanying graphs and by a review of the peak values assembled in
Table 1. For completeness, the calculated displacement time histories
for each accelerometer station are also plotted (Appendix A) although no
displacement data is available for comparison.

The purpose of this project was to examine the feasibility of using
THORAX V as an analytic tool to support cadaver experiments and dummy
design and evaluation. Considering the limitations necessarily imposed
upon the THORAX V model, (these are discussed in the body of the report),
the results obtained clearly support the conclusion that the use of
THORAX V is feasible and that it can make an important contribution.

This is not to séy that the model in its current form can be used
as a black box for any and all experimental conditions. The results of
the side loading cases combined with the wide scatter in some of the
experimental data speaks to the contrary. Additional studies, especially
of the side loading conditions are suggested. More detailed information
about each specimen and the conditions peculiar to each test set-up should
be monitored and incorporated in the analytic model.

We are encouraged by these results and believe that continued

development and improvement of this existing capability is justified. To

this end we offer the following suggestions for current applications and
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and future development efforts closely allied with experimental programs

at other centers.

Current Applications

(1) Parametric studies of the effects of spatial and temporal
load distributions

(2) Study the effects of cadaver posture and skeletal anatomy

(3) Calculation of seat belt and chest belt loads from sled
test simulations

(4) Fill out lost of missing data channels from experimental
results

(5) Determine effects of higher modes upon response parameters

Some Thoughts on Future Developments

(1) Complete the development of techniques for determining
skeletal geometry of each tested cadaver

(2) Conduct parametric studies of the effects of skeletal
geometry upon response parameters and injury production

(3) Incorporate injury criteria within THORAX

(4) Study effect of tensing voluntary chest muscles upon
skeletal injury

(5) Study of a closed glottis upon chest stiffening

(6) Study the chest-impactor contact problem

(7) Incorporate effect of involuntary muscles (e.g. inter-

costals) upon internal forces within the skeleton elements
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